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The linear, inviscid reflection of a straight-crested surface wave from a vertical wall 
is determined on the hypothesis that the contact angle of the meniscus vanishes. The 
reflection coefficient is a function of the parameter h = k, l ,  where k, is the 
wavenumber of the incident wave and 1 is the capillary length, and is approximated 
by R = exp ( -4ih2) for a gravity-capillary wave for which h 1.  The solution of this 
reflection problem is used to obtain matched-asymptotic approximations for 
standing waves in channels and circular cylinders. The meniscus-induced, fractional 
reduction of the frequency of the dominant mode in a deep circular cylinder is 
0.77 h2 (which exceeds the increase of ;A2 associated with the capillary energy of the 
free surface). This decrement is within 2 mHz of the value inferred from the measure- 
ments of Cocciaro et al. (1991) after allowing for the reduction in frequency induced 
by the viscous boundary layers at the walls, but there are residual uncertainties (in 
this comparison) associated with the wetting process at the moving contact line and 
possible surface contamination. 

1. Introduction 
In  1876, Lord Rayleigh measured the periods of the first five standing-wave modes 

in a circular tank about 3 m in diameter by ‘dipping one or more buckets 
synchronously with the beat of a metronome ’ and counting the oscillations for some 
5 min after the withdrawal of the buckets; his results were within 1 % of his 
theoretical predictions. Some 80 years later, Case & Parkinson (1957), working with 
electronic instrumentation, found discrepancies as large as 9 % between theory and 
observation for the period of the dominant mode in a ‘carefully polished’ 3 in. 
cylinder and attributed them to ‘surface tension effects associated with wetting of 
the wall’. This striking illustration of the importance of scale and, in particular, 
contact-line phenomena in the laboratory measurement of bounded surface waves is 
amplified by measurements of damping (see Miles 1967 for a review), the theoretical 
and experimental work of Benjamin & Scott (1979) on the fixed contact-line 
problem, the theoretical investigations of Hocking (1987a, b)  and Miles (1990, 1991) 
using a general linear contact-line condition, and the experimental work of Cocciaro, 
Faetti & Nobili (1991) on the zero-contact-angle problem. The limiting cases of either 
fixed contact line or fixed contact angle (which is realistic only for zero contact angle) 
are of special experimental interest by virtue of the presumed absence of contact-line 
dissipation (but see remarks a t  end of $5). 

As a basic zero-contact-angle problem, I consider here the linear, inviscid reflection 
of a surface wave of asymptotic form 

y-y,(z) = q(z,t) - Re{Aiei”t(ei~oz+Re-i”oz)} ( z t  00) (1.1) 
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by a vertical wall a t  x = 0 at which 

dy,/dx = 00 (X = 0), (1.2) 

where: y = y,(x) is the static meniscus; 7 is the free-surface displacement; Re 
signifies the real part of; A , ,  w and k, are the complex amplitude, frequency and 
wavenumber of the incident wave; w and k, are related by the linear dispersion 
relation 

T is the kinematic surface tension, and 1 is the capillary length ; R is the reflection 
coefficient, the determination of which is the primary goal of the present 
investigation. This reflection problem is solved by Hocking (19874 for the general 
contact-line condition crz = rt, where c is a constant, but he neglects the meniscus. 

I proceed as follows. In  $2 ,  I recapitulate the known solution for the static 
meniscus and formulate the linearized (in 7) boundary-value problem for two- 
dimensional, irrotational motion with the dynamical boundary conditions projected 
on y = y,. In $3,  I transform this problem to a pair of simultaneous integral 
equations for the Fourier-cosine transforms of 7 and the velocity potential. In $4,  I 
obtain a first-order (in y,) solution to these integral equations and show that the 
reflection coefficient is approximated by 

R=exp(-4ih2) ,  h = k , l <  1. (1.4a, b)  

In $5 ,  I extend the solution of the reflection problem to standing waves in a deep 
channel of width b B 1 and show that the natural frequencies are approximated by 

w i =  (g/b)[nn:+(nn:-4)hE], A,=nnl/b ( n =  1,2, ...). (1.5a,b) 

Note that the meniscus reduces the resonant frequency of the dominant mode ( n  = 
1)  by an amount that exceeds the increase associated with the capillary energy of the 
free surface. 

In 36, I determine the effects of the meniscus on standing waves in a circular 
cylinder of radius a and depth h (a ,  h 9 1 )  and show that the resonant frequencies are 
approximated by 

w2 = K(g/a) tanh (&/a)  [ 1 + A2( 1 - 2,u)], ( 1 . 6 ~ )  

where ( 1.6 b, c) 

and K is a zero of Jm(~). The meniscus-induced, fractional decrement of w for the 
dominant mode (m = 1, K = 1.84) in deep water (h > 2a) is 0.77h2, which, just as for 
the channel, exceeds the increase of +A2 associated with the capillary energy of the 
free surface. 

The approximation (1.6) agrees with the frequency measured by Cocciaro et al. 
(1991) within 2 mHz after allowing for the reduction in frequency induced by the 
viscous boundary layers on the lateral wall and the bottom, but neglecting 
viscoelastic effects a t  the free surface. This neglect appears to be appropriate for their 
fluid (‘octane ’), but their measured damping exceeds the corresponding theoretical 
value. This excess damping could be due to surface contamination or the wetting 
process at the moving contact line. 

The constraint of zero contact angle implies that no work is done by the capillary 
force at the contact line. There is a meniscus-induced change in the viscous 
dissipation at the wall, but the corresponding correction factor for this dissipation in 
the absence of the meniscus (see the Appendix) is 1 +O(h2) ,  which is negligible in the 
present context. 

~ z = g k o + T k ~ ~ g g k , ( l + k ~ z ~ ) ,  (1.3) 

h = d / a ,  ,u = K ( K ~  -m2)-’[1 + 2~(h/a)  cosech ( 2 ~ h / a ) ] ,  
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2. Linear boundary-value problem 
The meniscus, y = y,(x), is governed by the capillary equation 

where W is the static radius of curvature. The solution of (2.1), subject to the 
conditions of zero contact angle (y' = 00)  at x = 0 and evanescence at x = 00, has the 
parametric representation 

X ( ~ ~ ~ ~ ) + ~ ~ - ~ c o s + x ,  & =  Ym= -2sin+x, (2.2a,b) 
1 

- = X = l o g  - 
1 

where x = tan-'y;(x) increases monotonically from -in: at x = 0 to 0 at x = co. 
We note that 

J; Y m d x  = 1. (2.3) 

The assumption of two-dimensional, incompressible, irrotational motion described 
by the velocity potential #(x, y, t )  and the free-surface displacement (relative to y = 
ym)q(x, t )  leads to the linear (in q5 and q) boundary-value problem 

(2.4) #zz + #,, = 0 (0 < x < 00 9 - co < y < Ym + 7) , 
$ , = O  (x=O), # + O  (y.1 --co), (2.5a, b) 

(2.6a, b)  

Note that (1 +y;)-' = C O S ~ X  vanishes like xi as ~ $ 0 ,  by virtue of which the only 
condition that need be imposed on qz at the wall is x~q,+=O. (We anticipate that 
qz += 0 as x 0 ; see $4.) The statement of the problem is completed by the asymptotic 
condition (l.l), which we recast in the form 

#u = qt + Y; $2, #t + gq = ~ [ ( 1 +  ~2)-%z1z (Y = Ym). 

q - Re{Aeiutcos(kox+8)} (x? a), (2.7) 

where A = 2Aie-ie, R = e-2ie, (2.8a, b) 

3. Fourier-integral formulation 
We introduce the complex amplitudes d and f according to 

[#@, y, t ) ,  T(", 41 = Re{[d(x,y), f (41 e'99 (3.1) 

and satisfy (2.4) and (2.5) by positing 

where (3.2 b) 

are Fourier-cosine transforms. The Fourier integrals in (3.2 a)  are Cauchy principal 
values with respect to the singularities of @(k) and N(k)  at k = Lo, where (2.7) or, 
equivalently, 

f -Acos(kox+8) ( X ~ O O ) ,  (3.3) 

(3.4) implies N(k) - &4[nS(k- k,) cos 8 + (k- kO)-l sin e] (k + k,). 
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Substituting (3.2 a) into (2.6a, b),  multiplying the resulting equations through by 
coskx, integrating over 0 < x < co, introducing 

m(x, k) = k-'[exp (ky,) - 11, q(x) = 1 - ( 1  + y:)", (3.5a, b) 

in order to separate out these terms that are directly transformable, and simplifying 
through integration by parts, we obtain (cf. Miles 1990) 

m(x,k)sinkxsinAxdx ( 3 . 6 ~ )  

and (g+Tk2)N+io@ = m(x,A)coskxcoskxdx 

+FJYN(R)RddI:q(x) sinkxsinkxdx. (3.6 b) 

4. First-order approximation 
Guided by (3.4), we pose the solution of (3.6) in the form 

where, by hypothesis, Nl and @j1 are O(y,). Substituting (4.1) into (3.6), neglecting 
the contributions of Nl and @, to the right-hand side thereof, approximating m(x, k,) 
by y,(x) (see (3.5a)), and neglecting the second integral in (3.6b)t, we obtain the 
first-order (in y,) approximations 

iwNl - kG1 = iok y,(x) sin kx sin k, x dx (4.2 a) 1: 
(g + Tk2) Nl + i d l  = o2 y,(x) cos kx cos k, x dx. (4.2 b) and 

The elimination of a1 and the identities T = gP and wz = gk,( 1 + ki P) (1.3) then yield 

Som 
y,(x)cos(k+k,)xdx, F ( k )  = 

(1  +hi 1 2 )  k, k 
k( 1 + k2P) - k,( 1 + k: k 2 ) .  

(4.3 a, b) 

Letting k+k, in (4.1) and invoking (3.4), we obtain 

tan B = 2izk, (k - k,) Nl( k) (4.4 a) 

(4.4 b) 

= 2 ~ 2 + 0 ( ~ 4 )  ( A  = k,z&o),  (4.4c) 

where (4.4b) follows from ( 4 . 4 ~ )  through (4.3), and ( 4 . 4 ~ )  follows through (2.3). 
Further analysis reveals that the first-order approximation (4.2) implies an error 

t The expansion of q in powers of yk is inadmissible due to the singularity of yk a t  z = 0, but 
0 < q < 1 for x = O(2) and q = O(y:) for x % 1,  whence i t  can be shown that the neglect of the second 
integral in (3.6 b) is consistent with the first-order approximation. 
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factor of 1 +O(A), whence the error in ( 4 . 4 ~ )  is O(A3) ,  rather than O(A4); however, it 
appears that the numerical value of the O(A)  term in the error factor is typically 
smaller than that of the O(A2) term. 

The inverse-Fourier-cosine transform of (4.3 a )  may be obtained through the 
partial-fraction expansion of F(k)  with respect to the poles at k = k, and 
+iZ-'[l+O(A)]andentries 1.2(8), 1.2(11), 2.2(11), and2.2(14)inErdhlyietal. (1954); 
however, the integrals over the meniscus are intractable, and we therefore consider 
further only the first approximation to at the wall. Combining ( 3 . 2 ~ )  and (4.1), 
setting z = 0, invoking (4.3a, b)  and (2.2), and letting A J O ,  we obtain 

$(O)  = A c o s ~ [ l + f ~ ~ N , ( k ) d k ]  

1 = A  [ 1+- 2: 1; & y,(z) cos kx dz + O(A2) 

(4.5 a )  

(4.5 b)  

(4.5 c) 

The rough approximation Y ,  = exp (-X), which satisfies (2.1) for X % 1 and is 
normalized to satisfy (2.3), yields i for the integral in (4.5 c). It follows from (4.3) and 
yk = O(z-1) as zJ0 that N,(k) = O(k4) as k t  00, and hence from (3.1) and (4.1) that 
qZ+O as zJ0. 

5. Standing waves in a channel 
Standing waves of complex amplitude d that are antisymmetric/symmetric 

(odd/even) with respect to the midplane x = $b of the deep channel 0 < z < b are 
described by 

Matching (5.1) to (3.3) in 1 Q z Q l/k,, we obtain 

+,,, = dsin cos k 0 (%-x) 2 (1  Q x < ib) .  (5.1) 

(5.2 a, b )  

The error in the asymptotic matching between (5.1) and (3.3) corresponds to that 
in (4.4c), the substitution of which into (5.2b), followed by the invocation of (1.3), 
yields 

k,b = nn-4A2,, A, = nnl/b (n = 1,2, ...), (5.3 a ,  b )  

and w2, = (g/b)[nn+(nn-4)A~]. (5.4) 

6. Standing waves in a circular cylinder 
The effects of the meniscus on standing waves in a cylinder may be calculated by 

regarding the solution of the reflection problem as a boundary-layer approximation, 
in which x = O(1) is the normal coordinate and the amplitude A is a slowly varying 
function of the transverse (to x and y) coordinate, and matching to an appropriate 
outer solution in 1 Q x Q l/k,. Note that, in this approximation, the implicit 
assumption of deep water in the inner approximation requires only that the depth be 
large compared with the capillary length. 
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has the form (Lamb 1932, $5191 and 257) 
Consider a circular cylinder of radius a and depth h,  for which the outer solution 

where k = k,, m = 0,1, ... is the azimuthal wavenumber, and r and 9 are polar 
coordinates. Matching (6.1) to (3.3) in 16 x = a-r  6 l / k ,  we obtain 

which implies 

Expanding (6.3 b )  
Bessel’s equation, 

AcosB = dcosm$,  .Jm(ka)/Jm(ka) = tan8. (6.3 a, b)  

about ka = K ,  where K is a zero of Jm, eliminating Jk through 
and invoking tan 8 w 2h2 (4.4c), we obtain (cf. (5.3)) 

(6.4a, b )  

The corresponding approximation to the frequency (now allowing for finite depth) is 
given by 

w2 = gk( 1 + k212) tanh kh ( 6 . 5 ~ )  

= o;[i - 24 + 0 ( ~ 4 ) 1 ,  (6.5 b)  

w2 =E(l+h2) tanh-- ,  K h  A =(-)[1+sinh(2Kh/a) K2 K h 2  - m2 2Kh’a 1. (6.6u,b) 
O -  a a 

where 

A ,  the meniscus-induced fractional decrement in the frequency, reduces to 0.77h2 for 
the dominant mode (m = 1 and K = 1.84) in deep (h > 2a) water. This decrement 
exceeds the corresponding increment of +A2 associated with the capillary energy of 
the free surface. 

The decrement - d w ,  may be comparable with that induced by viscous boundary 
layers. The Stokes-like boundary layers on the walls are governed by the linear 
diffusion equation 

where v is the kinematic viscosity, x is the coordinate normal to the wall, and v is the 
tangential velocity, which must vanish at the wall and match the inviscid velocity 
outside of the boundary layer. A straightforward boundary-layer analysis? reveals 
that the viscous shift in frequency is - 8, w,, where 8, is the damping ratio associated 
with boundary-layer dissipation and is given by (Case & Parkinson 1957 ; Miles 1967) 

(vi3z-iw)v = 0, (6.7) 

W + Z K (  1 -:) cosech ( 2 K : ) ] ,  

in which (2v/w0)4 is the boundary-layer thickness. 
The equality between the frequency decrement and the exponential damping 

coefficient reflects the fact that the phase of the boundary-layer impedance is and 
holds for the boundary layer at the free surface only in the limiting case of an 

t This analysis ignores the meniscus and implicitly assumes that the first-order effects of the 
meniscus and the Stokes boundary layers are additive. This assumption is confirmed by the more 
detailed analysis of Mei & Liu (1973). 
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inextensible film. In  the more general case of a linear, viscoelastic surface for which 
the relaxation time is small compared with 2n/w0, the counterpart of (1 +i)S, is 
(a  + ip) S,, where as, wo and PS, wo are, respectively, the incremental damping 
coefficient and decremental frequency induced by the surface film, 

a + i p =  (l+i)C=C,-C,+i(C,+Ci), 

and C is given by (3.15) of Miles (1967). The limiting values of C for a clean surface 
(no film) and a fully contaminated surface (inextensible film) are 0 and 1, 
respectively. If the film is insoluble and inviscid (perfectly elastic), the damping has 
a resonant maximum of a = 2, with /? = 0 at C, = Ci = 1. 

Cocciaro et al. (1991) report measurements of frequency and damping coefficient 
for the dominant mode in a cylinder of radius 5.025 cm filled to a depth of 7.8 cm with 
a fluid ('octane') that appeared to wet the wall with zero (< 2") contact angle. They 
compare their measured frequencies with w = w0(l-2SW), which they attribute to 
Mei & Liu (1973), but the factor of 2 in their (1.5) is a misprint and should be deleted. 
They state that the frequency given by Mei & Liu's result for the dominant mode in 
their circular cylinder is u1 = w/2n = 3.000 Hz; however, using their data (a  = 
5.025 cm, h = 7.8 cm, K = 1.8412, T = 21.80 dynes/cm, p = 0.702 gm/cm3, u = 
0.00772 cm2/s), and g = 980.5 cm/s2, I obtain (B. Cocciaro, private communication, 
agrees with this revised calculation of uo) 

uo = w0/2n = 3.0131 Hz, 8, = 2.60 x d = 3.39 x (6.10~-c) 

(6.10d, e )  

This last result is close to their measured frequency of 2.997 Hz in the limit of zero 
amplitude (see their figure 4b). However, their corresponding damping coefficient is 
RY = 0.107 s-l, whereas the theoretical result for a clean surface is S,wo = 0.049 s-'. 
It is possible that this discrepancy is due to surface contamination (the theoretical, 
incremental damping coefficient for a fully contaminated surface is 8, wo = 0.050 s-l, 
which also would imply a corresponding reduction of 8mHz in the theoretical 
frequency), but Cocciaro et al. (1991) regard this as unlikely and suggest that 'the 
effect of the draining film at the vertical wall could be dominant for the damping. 
(Cocciaro et al. 1991 also invoke my (Miles 1967) model of capillary-hysteresis to 
obtain finite-amplitude damping in qualitative agreement with their observations, 
but this mechanism is absent for zero amplitude.) 

u0( 1 - 8,) = 3.005 Hz, u0( 1 - 8, - A )  = 2.995 Hz. 

I am indebted to B. Cocciaro for helpful comments. This work was supported in 
part by the Division of Mathematical Sciences/Applied Mathematics programs of the 
National Science Foundation, NSF Grant DMS 89-08297, and by the Office of Naval 
Research NOOO14-92-5-1171. 

Appendix. Viscous dissipation 
The constraint of zero contact angle implies that no work is done by the capillary 

force at the contact line. The viscous dissipation rate (per unit width in the boundary 
layer at  the wall) is given by (Miles 1967) 
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where p is the density, u is the kinematic viscosity, and 

@(k) ekvkdk 

is the complex amplitude of the velocity a t  the wall. The first-order approximation, 
obtained from (4.1) and (4.2), is 

2 (iw)-l (am @,(k) ekvk dk] 

Substituting (A 3) into (A l) ,  and neglecting the second-order term, we obtain 

~ ~ 1 A 1 ~  cos2 0 [ 8k0 1; k@,(k) dk] 
2kO m w  k + k, 

Iv"12dy = 1 +- 

where (A 46) follows from (A 4a) through (4.2)-(4.4). 
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